Abstract
AbstractThe Radium Delayed Coincidence Counter (RaDeCC) is one of the most extensively used equipment for measuring 223Ra and 224Ra activities in water and sediment samples. Samples are placed in a closed He‐circulation system that carries the Rn produced by the decay of Ra to a scintillation cell. Each alpha decay recorded in the cell is routed to an electronic delayed coincidence system which enables the discrimination of 223Ra and 224Ra. In this study, the measurement and quantification methods using the RaDeCC system are assessed through analyses of registered data in different RaDeCC systems worldwide and a set of simulations. Results of this work indicate that the equations used to correct for 223Ra and 224Ra cross‐talk interferences are only valid for a given range of activities and ratios between isotopes. Above certain limits that are specified in this study, these corrections may significantly overestimate the quantification of 223Ra and 224Ra activities (up to ~40% and 30%, respectively), as well as the quantification of their parents 227Ac and 228Th. High activities of 226Ra may also produce an overestimation of 224Ra activities due to the buildup of 222Rn, especially when long measurements with low activities of 224Ra are performed. An improved method to quantify 226Ra activities from the buildup of 222Rn with the RaDeCC system is also developed in this study. Wethus provide a new set of guidelines for the appropriate quantification of 223Ra, 224Ra, 227Ac, 228Th, and 226Ra with the RaDeCC system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.