Abstract

To improve the safety and reliability of pipeline structures, much work has been done using ultrasonic guided waves methods for pipe inspection. Though good for evaluating the defects in the pipes, most of the methods lack the capability to precisely identify the defects in the pipe features like welds or supports. Therefore, a novel guided wave based cross-sectional diagnostic imaging algorithm was developed to improve the ability of circumferential cracks identification in the pipe features. To ensure the accuracy of the imaging, an angular profile-based frequency selection method is presented. As validation, the approach was employed to identify the presence and location of a small circumferential crack with 1.13% cross sectional area (CSA) in the welding zone of a 48mm diameter type 304 stainless steel pipe. Accurate identification results have demonstrated the effectiveness of the developed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.