Abstract

Guided waves have been used for structural health monitoring to detect damage or defects in structures. However, guided wave signals often involve multiple modes and noise. Extracting meaningful damage information from the received guided wave signal becomes very challenging, especially when some of the modes overlap. The aim of this study is to develop an effective way to deal with noisy guided-wave signals for damage detection as well as for de-noising. To achieve this goal, a robust sparse Bayesian learning algorithm is adopted. One of the many merits of this technique is its good performance against noise. First, a Gabor dictionary is designed based on the information of the noisy signal. Each atom of this dictionary is a modulated Gaussian pulse. Then the robust sparse Bayesian learning technique is used to efficiently decompose the guided wave signal. After signal decomposition, a two-step matching scheme is proposed to extract meaningful waveforms for damage detection and localization. Results from numerical simulations and experiments on isotropic aluminum plate structures are presented to verify the effectiveness of the proposed approach in mode identification and signal de-noising for damage detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.