Abstract
Transmission line metamaterials on coplanar waveguide with series-capacitive and shunt-inductive distributed loading in periodical intervals are characterized using our developed fullwave self-calibrated method of moments. Firstly, the two effective per-unit-length transmission parameters, i. e., complex propagation constant and characteristic impedance, are numerically extracted. The results provide a straightforward insight into the forward- and backward-wave propagation characteristics in several distinctive bands, including the left- and right-handed stop-bands and passbands. In particular, it is demonstrated that in the whole left-handed passband, the propagation constant has purely negative phase constant while the characteristic impedance has only positive real quantity. Next, varied left- and right-handed passbands are studied in terms of lower/higher cut-off frequencies based on ideal equivalent circuit model and practical distributed CPW elements, respectively. Of particular importance, the left-handed and right-handed passbands find to be able to be directly connected with a seamless bandgap under the condition that normalized inductance and capacitance of loaded CPW inductive and capacitive elements become exactly the same with each other. Finally, the 9-cell metamaterial circuits on CPW with actual 50Ω feed lines are designed and implemented for experimental validation on the derived per-unit-length parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.