Abstract

Guided waves can propagate along the surface of a solid structure at a large distance with little attenuation. Hidden defects within the structure can be detected based on the abnormal reflection or transmission of guided waves. The distance between the defect and the transducer can be calculated according to the arrival time of the wave package and wave speed. Therefore, the guided wave speed should be known prior. However, existing analytical models can only predict the guided wave speed along the surface of a horizontal solid covered by a liquid layer. These models are not suited for the characterization of ultrasonic nondestructive testing of ship hulls, sluice gates, water dams, bridge piers, etc. In this study, an analytical model is proposed for the guided wave propagation along a vertical solid partially inserted into a horizontal liquid layer. A secular equation is derived and solved to predict the guided wave speed at the vertical solid–liquid interface. Twenty finite element simulations and thirty-three physical experiments are conducted on different materials with different dimensions by using varying incident frequencies. The results demonstrate that the proposed model can provide accurate analytical wave speeds to guide the nondestructive testing and structural health monitoring of underwater structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.