Abstract
Variable thickness structures are prevalent in aircraft, ships, and other machines, necessitating numerous sensors for health monitoring to reduce safety hazards. This paper presents a guided wave multi-frequency localization method based on frequency-dependent velocity anisotropy. This method achieves damage localization in variable-thickness structures with a pair of sensors and can effectively reduce the number of sensors used for monitoring. Variations in structural thickness cause a gradient in guided wave velocity that bends the propagation path. Different thickness variations with different directions cause wave velocity anisotropy. As a result, variations in thickness cause possible damage loci determined by echo time to deviate from an elliptical shape. Because the velocity anisotropy is frequency-dependent, damage loci at different frequencies are close but do not overlap and intersect only at the damage location. So, the multi-frequency method can increase the damage information acquired by a single pair of sensors, enabling damage localization. Experimental validation was conducted on a steel plate with linearly varying thicknesses. The feasibility of the multi-frequency localization method was verified by successfully locating the damage at three different locations using a pair of receiver-excitation sensors. In addition, the experiments demonstrated the capability of this multi-frequency method in improving the localization accuracy of sensor networks. The method has potential applications in monitoring systems lightweight, phased arrays, and imaging enhancement.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.