Abstract

In this paper is presented an improved method for locating a transient acoustic emission (AE) source on a pipeline with two broad-band AE sensors. Using Short Time Fourier Transform (STFT), the method identifies a flexural wave mode, F(1,1), in the two AE signals detected, notes its respective arrival times at different frequencies, and determines the location of the AE source based on the arrival times. Due to velocity dispersion, the arrival time of the wave mode varies with frequency. The method has three main advantages: that the wave speed is not required in the calculation, that it is insensitive to threshold setting for arrival time estimation, and that, at least in theory, the accuracy of the source location can be made as high as desired. The paper first demonstrates, by way of an experiment, the inadequacy of threshold-crossing as a method for identifying the first arrival time of the AE wave. The paper then presents the theory of the proposed method and of the estimated error inherent in the theory and an explanation on how the error can be reduced. The method is then verified experimentally using results obtained from a 3-m long copper pipe of 22mm diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.