Abstract

Surface plasmon microscopy is widely recognized for its high sensitivity to nanoscale dielectric or metallic structures confined in a close neighborhood of a gold surface. Recently, its coupling to high-numerical-aperture objective lenses pushed its resolution down to the diffraction limit. Here, we show that the same microscope configuration can be used to excite standing guided waves in asymmetric slabs, which definitely extends the range of applications of this type of microscopy from nano- to microscale structure imaging. We demonstrate experimentally on PPMA films that the V(Z) response of a scanning surface plasmon microscope can be Fourier inverted in order to obtain the reflectivity curve R(ν). When the guided waves are excited, R(ν) shows a finite number of sharp peaks corresponding to quantified guiding modes from which one can extract both the refractive index (RI) and the thickness of the layer at the point focused by the microscope. This device can thus be used to reconstruct RI and thickness contours of dielectric samples with a high spatial resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.