Abstract
Many image-guided interventions rely on tracked ultrasound where the transducer is augmented with a tracking device. The relationship between the ultrasound image coordinate system and the tracking sensor must be determined accurately via probe calibration. We introduce a novel calibration framework guided by the prediction of target registration error (TRE): Between successive measurements of the calibration phantom, our framework guides the user in choosing the pose of the calibration phantom by optimizing TRE. We introduced an oriented line calibration phantom and modeled the ultrasound calibration process as a point-to-line registration problem. We then derived a spatial stiffness model of point-to-line registration for estimating TRE magnitude at any target. Assuming isotropic, identical localization error, we used the model to estimate TRE for each pixel using the current calibration estimate. We then searched through the calibration tool space to find the pose for the next fiducial which maximally minimized TRE. Both simulation and experimental results suggested that TRE decreases monotonically, reaching an asymptote when a sufficient number of measurements (typically around 12) are made. Independent point reconstruction accuracy assessment showed sub-millimeter accuracy of the calibration framework. We have introduced the first TRE-guided ultrasound calibration framework. Using a hollow straw as an oriented line phantom, we virtually constructed a rigid lines phantom and modeled the calibration process as a point-to-line registration. Highly accurate calibration was achieved with minimal measurements by using a spatial stiffness model of TRE to strategically choose the pose of the calibration phantom between successive measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of computer assisted radiology and surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.