Abstract
The problem of automatic robust estimation of the epipolar geometry in cases where the correspondences are contaminated with a high percentage of outliers is addressed. This situation often occurs when the images have undergone a significant deformation, either due to large rotation or wide baseline of the cameras. An accelerated algorithm for the identification of the false matches between the views is presented. The algorithm generates a set of weak motion models (WMMs). Each WMM roughly approximates the motion of correspondences from one image to the other. The algorithm represents the distribution of the median of the geometric distances of a correspondence to the WMMs as a mixture model of outlier correspondences and inlier correspondences. The algorithm generates a sample of outlier correspondences from the data. This sample is used to estimate the outlier rate and to estimate the outlier pdf. Using these two pdfs the probability that each correspondence is an inlier is estimated. These probabilities enable guided sampling. In the RANSAC process this guided sampling accelerates the search process. The resulting algorithm when tested on real images achieves a speedup of between one or two orders of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.