Abstract

The effects of finite beams and finite gratings on the performance of guided-mode resonant subwavelength gratings are characterized by using the rigorous boundary element method. The gratings are strongly modulated, have a finite number of periods, and are illuminated by normally incident Gaussian beams. Quantitative results are presented for silicon-on-sapphire resonant gratings and gallium arsenide-aluminum arsenide resonant gratings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.