Abstract

We propose a refractive index sensor with both high bulk sensitivity and figure of merit (FOM) that engages the guided-mode resonance (GMR) effect with the assistance of a metallic layer and structural symmetry-breaking in the grating layer. Owing to the existence of the metallic layer, the electric field at resonance can be reflected to the sensing environment, and enhanced bulk sensitivity is realized. Meanwhile, the full width at half maximum of the GMR mode can be decreased by increasing the asymmetrical degree of the grating, thus obtaining a high FOM which benefits the sensing resolution. A bulk refractive index sensitivity of 1076.7 nm/RIU and an FOM up to 35889 RIU-1 are achieved simultaneously. Other structural parameters such as the refractive index and fill factor of the grating are systematically discussed to optimize the sensing performance. The proposed GMR sensor with both high bulk sensitivity and FOM value has potential uses in applications with more stringent sensing requirements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call