Abstract

The operation of optical narrowband reflection filters based on resonance anomalies of waveguide gratings is well established for gratings of infinite extent. We investigate the properties of finite-aperture waveguide-grating resonance filters by means of rigorous electromagnetic theory and an approximate model. The rigorous approach illustrates the scattering of optical energy from the guided mode at and near the edges of the element, which leads to a reduced diffraction efficiency into the backward-diffracted zeroth order. The approximate approach provides an optical-engineering model for the estimation of the minimum grating size required to achieve a high resonance-wavelength reflectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.