Abstract

This study was performed at Assiut University, Assiut, Egypt.Anterior distal femoral hemiepiphysiodesis (ADFH) using intra-articular plates for the correction of paediatric fixed knee flexion deformities (FKFD) has two main documented complications: postoperative knee pain and implant loosening. This study describes a biomechanical analysis and a preliminary report of a novel extra-articular technique for ADFH.Sixteen femoral sawbones were osteotomized at the level of the distal femoral physis and fixed by rail frames to allow linear distraction simulating longitudinal growth. Each sawbone was tested twice: first using the conventional technique with medial and lateral parapatellar eight plates (group A) and then with the plates inserted in the proposed novel location at the most anterior part of the medial and lateral surfaces of the femoral condyles with screws in the coronal plane (group B). Gradual distraction was performed, and the resulting angular correction was measured. Strain gauges were attached to the plates, and the amount of strain (and equivalent stress) over the plates was recorded. This technique was then applied to 9 paediatric FKFDs of different aetiologies. The preoperative FKFD and the amount of subsequent angular correction were measured.The amount of angular correction was higher in group B at 5, 10-, and 15-mm of distraction (p<0.001). The maximum and overall stresses measured throughout the distraction process were higher in group A (p<0.001). The mean FKFD improved from 24 ± 9° preoperatively to 9 ± 7° after 10 ± 3° months (p<0.001). The correction rate was 1.81 ± 0.65° per month.During ADFH, the fixation of the eight plates in the coronal plane at the anterior part of the femoral condyles may produce greater correction and lower stresses over the implants as compared to the conventional technique. Preliminary results from our initial series seem to support the effectiveness of this technique with respect to the degree of angular correction achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.