Abstract

Designing adaptive games for individual emotional experiences is a tricky task, especially when detecting a player’s emotional state in real time requires physiological sensing hardware and signal processing software. There is currently a lack of software that can identify and learn how emotional states in games are triggered. To address this problem, we developed a system capable of understanding the fundamental relations between emotional responses and their eliciting events. We propose time-evolving Affective Reaction Models (ARM), which learn new affective reactions and manage conflicting ones. These models are then meant to provide information on how a set of predetermined game parameters (e.g., enemy and item spawning, music and lighting effects) should be adapted, to modulate the player’s emotional state. In this paper, we propose and describe a framework for modulating player emotions and the main components involved in regulating players’ affective experience. We expect our technique will allow game designers to focus on defining high-level rules for generating gameplay experiences instead of having to create and test different content for each player type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call