Abstract

Abstract Single-digit-nanometer scale plasmonic nanoantenna platforms are widely used in optical sensors, quantum plasmonics, and other applications. Uniform and reliable fabrications with a single-digit-nanometer resolution are desirable for diverse quantum nanophotonic device applications, but improving the process yield and uniformity of the shape of the nanoantenna over the entire fabrication area remains a challenge. Here we report the guided domino lithography fabrication method for uniform ultra-sharp nanoantenna arrays. We use a collapsing of unstable photoresist nanostructures with a guide structure to uniformly fabricate ultra-sharp bowtie photoresist masks. We directly compare the yields of the conventional and the guided domino lithography under the optimized electron beam exposing and development conditions. Furthermore, we conduct a rigorous analysis to verify the electric field enhancement effect from ultra-sharp bowtie nanoantennas fabricated with different geometry. We believe that guided domino lithography can be a promising solution toward a practical manufacturing method for single-digit-nanometer plasmonic nanoantennas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call