Abstract

Biocompatible materials applied in guided bone regeneration are needed to prevent leakage caused by the invasion of peripheral epithelium. The aim of this study is to develop a thermosensitive in situ gel system containing alendronate sodium loaded PLGA nanoparticles and alendronate sodium loaded membranes for guided bone regeneration. Thermosensitive Pluronic F127 gel system was preferred to prevent soft tissue migration to the defect site and prolong the residence time of the nanoparticles in this region. In situ gel system was combined with membrane formulation to enhance bone regenaration activity. Efficacy of combination system was investigated by implanting in 0.5 × 0.5 cm critical size defect in tibia of New Zealand female rabbits. According to the histopathological results, fibroblast formations were found at defect area after 6 weeks of post implantation. In contrast, treatment with the combination of in-situ gel containing nanoparticles with membrane provided woven bone formation with mature bone after 4 weeks of post implantation. As a results, the combination of in-situ gel formulation containing alendronate sodium-loaded nanoparticles with membrane formulation could be effectively applided for guided bone regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.