Abstract

Computational modeling is crucial for understanding and analyzing complex systems. In biology, model creation is a human dependent task that requires reading hundreds of papers and conducting wet lab experiments, which would take days or months. To overcome this hurdle, we propose a novel automated method, that utilizes the knowledge published in literature to suggest model extensions by selecting most relevant and useful information in few seconds. In particular, our novel approach organizes the events extracted from the literature as a collaboration graph with additional metric that relies on the event occurrence frequency in literature. Additionally, we show that common graph centrality metrics vary in the assessment of the extracted events. We have demonstrated the reliability of the proposed method using three different selected models, namely, T cell differentiation, T cell large granular lymphocyte, and pancreatic cancer cell. Our proposed method was able to find high percent of the desired new events with an average recall of 82%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.