Abstract

Using the molecular tailoring approach, a total energy scale for the push-pull effect in the range from -40 to 100 kcal/mol is created for the wide series of neutral, charged and doubly charged compounds on the chalcone platform. Taking into account similar energy scale for hydrogen bonds, the strength of the push-pull effect is ranked in the seven categories, ranging from negative (anti-push-pull) to very weak and very strong push-pull effect. It is demonstrated that the molecular properties of chalcone can be tuned prior synthesis due to the created energy scale for the push-pull effect. The single bonds of the π-spacer in the chalcones are shortened, the double ones are lengthened, and the C=O bond vibrations are red shifted when the push-pull effect is enhanced along the energy scale. The HOMO and LUMO energies change systematically while the HOMO-LUMO energy gap narrows as the strength of the push-pull effect increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call