Abstract

Tissue engineering requires the design and manufacture of biomimetic scaffolds. Collagen-derived nanofibrous scaffolds have been intensively studied because collagen, in the form of fibrils, is one of the main components of the extra cellular matrix (ECM). Several collagen materials have been used in electrospinning studies including mammalian extracted Type I collagen and gelatin formulations. Denatured whole chain collagen (DWCC) can be prepared by heat denaturing acid-soluble collagen extracted from cold-water fish skin. This product provides a consistent source of collagen with a controlled molecular weight profile and intact alpha chains including telopeptides. In this work, we studied DWCC-water-acid systems in order to determine the effect of solution composition on nanofibre morphology. Whereas measurement of the classical physical properties of concentrated solutions failed to predict and only partially explained the electrospinning behavior of collagen derived polymers, hydrodynamic properties provided insight. All the samples are presented in ternary diagrams to map the electrospinnability of the systems. These “electrospinning maps” provide an informative resource to electrospinning collagen-derived product for biomedical or commercial applications and a practical alternative to complicated models developed for synthetic polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.