Abstract

BackgroundIf structures of interest are hidden beneath turbid layers such as biological tissues, imaging becomes challenging, even impossible. However, if the point spread function of the system is known from the presence of a guide star, application of common deconvolution algorithms can be a convenient approach to reconstruct even heavily scrambled images. In this work, we present the severity of scattering and the capability of deconvolution techniques in optical settings realistically mimicking biological applications.MethodsWe determine the point spread function (PSF) of the optical path using a single fluorescent bead hidden behind a scattering layer. Once the PSF is obtained, a scene containing several beads is brought to the exact the same position behind the scattering layer. The scrambled image of the scene is then deconvoluted with the PSF. Plastic films and thin slices of chicken tissues are used as scattering layers.ResultsDespite the low signal provided by small fluorescent particles and their short distance of a few millimeters to the turbid media, the reconstructed images reproduced the original scenes successfully. The spatial variance of the PSF caused by the inhomogeneous scattering layer mainly limited the size of the reconstructed area.ConclusionOur method overcomes the negative effects of scattering on the detection side of an imaging system. However, it can be combined with wavefront shaping methods optimizing the illumination path as well leading to even further increase of signal to noise ratio and image quality. The required guide star can be brought inside the biological sample to a desired position using optical fibers as a light guide or using capillaries filled with bright fluorescent molecules.

Highlights

  • If structures of interest are hidden beneath turbid layers such as biological tissues, imaging becomes challenging, even impossible

  • The required guide star can be brought inside the biological sample to a desired position using optical fibers as a light guide or using capillaries filled with bright fluorescent molecules

  • The structures of interest in biological tissues are covered with scattering layers both on the illumination path and detection path

Read more

Summary

Introduction

If structures of interest are hidden beneath turbid layers such as biological tissues, imaging becomes challenging, even impossible. Traditional adaptive optics techniques in fluorescence microscopy rely on direct wavefront measurements, employing e.g. a Hartmann-Shack sensor [1,2,3]. This sensor detects and analyses either the aberrant wavefront of the backscattered excitation light [4, 5] or the wavefront of a fluorescent guide star [6,7,8]. The compensation of the aberrations is performed by a spatial light modulator or a deformable mirror device.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.