Abstract

Steel columns in sway and nonsway frames that are spliced along their length generally have a lower strength capacity in compression. This load capacity can be further reduced owing to the inevitable presence of small geometrical imperfections in the form of the out-of-straightness of the column and column segment misalignment. The current work examines the buckling behavior of a framed spliced column with initial imperfections and the possibility of a nonuniform cross section. A geometrically nonlinear model accounting for imperfect elastic buckling behavior is formulated using the differential equations of equilibrium. This is followed by a study of the imperfection sensitivity to the linearly evaluated critical load. A discussion on the variation of the load-carrying capacity with the level of imperfections on a practical spliced column is also presented. The findings suggest that a spliced column can be considered equivalent to a prismatic Euler column, with an appropriate effective length, for design purposes. In this context, some implications for design are deduced from the presented analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.