Abstract

NASA is currently involved in definition studies of a Personnel Launch System (PLS) that could be used to transport people to and from low-earth orbit. This vehicle would serve both to complement the Space Shuttle and to provide alternative access to space in the event the Space Shuttle fleet were unavailable for a prolonged period. The PLS would consist of a manned spacecraft launched by an expendable vehicle, e.g., Titan 4. One promising candidate for the manned component of the PLS is the NASA Langley Research Center HL-20 lifting body. Many studies are currently underway to assess this vehicle, and one of the main areas of study is the development of the capability to successfully enter, glide to the landing site, and land. To provide this capability, guidance and control algorithms have been developed, incorporated into a six-degree-of-freedom simulation, and evaluation in the presence of off-nominal atmospheric conditions, consisting of both density variations and steady-state winds. In addition, the impact of atmospheric turbulence was examined for the portion of flight from Mach 3.5 to touchdown. This analysis showed that the vehicle remained controllable and could successfully land even in the presence of off-nominal atmospheric conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call