Abstract

BackgroundArthritis is a common degenerative joint disease characterized by deterioration of articular cartilage, subchondral bone, and associated with immobility, pain and inflammation. The incessant action of reactive oxygen species (ROS) during progressive arthritis causes severe oxidative damage to vital organs and circulatory system. PurposeIn this study we investigated the ability of guggulipid (GL), a lipid rich extract from the gum resin of the plant Commiphora whighitii to suppress the progressive arthritis and associated liver oxidative stress both in vivo and in vitro. Study design/MethodsThe anti-arthritic ability of GL was demonstrated in vitro using IL-1β stimulated bovine nasal cartilage model and in vivo Freund's complete adjuvant-induced arthritic rat model. Collagen/proteoglycan degradation and pro-inflammatory mediators were monitored in the harvested culture medium of nasal cartilage by estimating the levels of matrix metalloproteinases (MMPs), hydroxy proline, glycosaminoglycans and inflammatory mediators. Further, anti-arthritic ability of GL was evaluated in vivo by measuring enzymatic and non-enzymatic mediators of cartilage degradation, inflammation and oxidative stress markers. ResultsGL significantly inhibited the IL-1β stimulated cartilage degradation in vitro by mitigating the MMPs activity, collagen degradation and secretion of pro-inflammatory mediators. Further, GL significantly reduced the adjuvant-induced paw swelling and body weight loss in vivo. GL remarkably reduced the MMPs and hyaluronidases activities in serum and bone homogenate along with altered hematological parameters. GL also mitigated the elevated bone resorbing enzymes cathepsins, exoglycosidases and phosphatases. Additionally, GL effectively mitigated ROS and oxidative stress-mediators recuperating the altered serum/liver oxidative stress and liver damage incurred during arthritic progression. ConclusionIn summary, the study clearly demonstrates the protective efficacy of GL against arthritis and its associated oxidative stress, particularly, liver oxidative damage. Hence, GL could be a potential alternative and complementary medicine to treat inflammatory joint diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call