Abstract

Gas clathrate hydrates or gas hydrates are made of H-bonded water molecules forming cages, within which gaseous (guest) molecules are encapsulated. The formed clathrate structures, which may be metastable, depend on the nature and on the partitioning of the guest molecules in the water cage. This work focuses on the structural and vibrational properties of nitrogen hydrate in its two clathrate forms (namely, SI and SII) in the thermodynamic ranges 50–200 bar and 150–270 K, together with a comprehensive analysis of the transformation from SI to SII of this gas hydrate. The thermal expansion of both structures has been measured at 1 bar, and the melting of the nitrogen hydrate has been measured at ca. 210 K at 1 bar. Moreover, the SI structure is metastable in the studied pressure region: from time-dependent neutron powder diffraction analysis, it is shown that the SI structure transforms over time to the SII structure with a rate of (1.37 ± 0.17) × 105 s–1 at 100 K and at 1 bar. The transformation is also ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.