Abstract

Guest-host Raman under liquid nitrogen spectroscopy (GHRUNS) is introduced whereby solid-state guest molecules are isolated inside cage-like host environments for the facile acquisition of their Raman spectra. This convenient method features reduced fluorescence, the analysis of populations in their ground states, and increased signal to noise ratios. Samples are also preserved through the reduction of thermal degradation and oxidation. To demonstrate the benefits of this new method, Raman spectra of the ubiquitous molecule C60 inside a cage of water ice are presented. Using this technique, a new normal mode of C60 is elucidated. The GHRUNS methodology is of interest to those seeking to acquire and characterize the vibrational spectra, structure, and properties of emissive, air-sensitive molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.