Abstract

The present paper deals with the characterization of a ferroelectric liquid crystal–nanoparticle (FLC–NP) composite system. The dielectric, electrical and polarization property of the FLC–NP composite system have been studied as a function of temperature and frequency. Ferroelectric Cu-doped ZnO (Cu–ZnO) nanoparticles have been added to the pure ferroelectric liquid crystal (FLC) Felix 17/100. The nanoparticles are bigger in size as compared to FLC molecules; therefore, they distort the existing geometry of FLC matrix and set up an antiparallel correlation with the dipole moments of the host FLC molecules. This antiparallel correlation of guest–host geometry reduces the net ferroelectricity of the composite system and modifies all the physical properties of the pure FLC. The change in properties has been analysed and explained in the light of guest–host interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call