Abstract

Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA Introduction The USENIX Conference on Object-Oriented Technologies and Systems (COOTS) is held annually in the late spring. The conference evolved from a set of C++ workshops that were held under the auspices of USENIX, the first of which met in 1989. Given the growing diverse interest in object-oriented technologies, the C++ focus of the workshop eventually became too narrow, with the result that the scope was widened in 1995 to include object-oriented technologies and systems. COOTS is intended to showcase advanced RD the architecture and implementation of distributed object systems (e.g. CORBA, DCOM, RMI); object-oriented programming and specification languages; object-oriented design and analysis. The 4th meeting of COOTS was held 27 - 30 April 1998 at the El Dorado Hotel, Santa Fe, New Mexico, USA. Several tutorials were given. The technical program proper consisted of a single track of six sessions, with three paper presentations per session. A keynote address and a provocative panel session rounded out the technical program. The program committee reviewed 56 papers, selecting the best 18 for presentation in the technical sessions. While we solicit papers across the spectrum of applications of object-oriented technologies, this year there was a predominance of distributed, object-oriented papers. The accepted papers reflected this asymmetry, with 15 papers on distributed objects and 3 papers on object-oriented languages. The papers in this special issue are the six best distributed object papers (in the opinion of the program committee). They represent the diversity of research in this particular area, and should give the reader a good idea of the types of papers presented at COOTS as well as the calibre of the work so presented. The papers The paper by Jain, Widoff and Schmidt explores the suitability of Java for writing performance-sensitive distributed applications. Despite the popularity of Java, there are many concerns about its efficiency; in particular, networking and computation performance are key concerns when considering the use of Java to develop performance-sensitive distributed applications. This paper makes three contributions to the study of Java for these applications: it describes an architecture using Java and the Web to develop MedJava, which is a distributed electronic medical imaging system with stringent networking and computation requirements; it presents benchmarks of MedJava image processing and compares the results to the performance of xv, which is an equivalent image processing application written in C; it presents performance benchmarks using Java as a transport interface to exchange large medical images over high-speed ATM networks. The paper by Little and Shrivastava covers the integration of several important topics: transactions, distributed systems, Java, the Internet and security. The usefulness of this paper lies in the synthesis of an effective solution applying work in different areas of computing to the Java environment. Securing applications constructed from distributed objects is important if these applications are to be used in mission-critical situations. Delegation is one aspect of distributed system security that is necessary for such applications. The paper by Nagaratnam and Lea describes a secure delegation model for Java-based, distributed object environments. The paper by Frolund and Koistinen addresses the topical issue of providing a common way for describing Quality-of-Service (QoS) features in distributed, object-oriented systems. They present a general QoS language, QML, that can be used to capture QoS properties as part of a design. They also show how to extend UML to support QML concepts. The paper by Szymaszek, Uszok and Zielinski discusses the important issue of efficient implementation and usage of fine-grained objects in CORBA-based applications. Fine-grained objects can have serious ramifications on overall application performance and scalability, and the paper suggests that such objects should not be treated as first-class CORBA objects, proposing instead the use of collections and smart proxies for efficient implementation. The paper by Milojicic, LaForge and Chauhan describes a mobile objects and agents infrastructure. Their particular research has focused on communication support across agent migration and extensive resource control. The paper also discusses issues regarding interoperation between agent systems. Acknowledgments The editor wishes to thank all of the authors, reviewers and publishers. Without their excellent work, and the contribution of their valuable time, this special issue would not have been possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call