Abstract

With the rapid development of information technologies, the computing, networking, and physical elements in industrial environments are becoming tightly amalgamated with each other, resulting in the formation of the so-called Industrial Cyber-Physical Systems (ICPS). These systems forge the core of current real-world networked industrial infrastructures, having a cyber-representation of physical assets through digitalization of data across the enterprise, along the value stream and process engineering life cycle, along the digital thread, and along the supply chain. Typical applications of ICPS include smart grids, digital factory, cognitive and collaborative robots, freight transportation, process control, plant-wide systems, medical monitoring, etc. ICPS often operate in an unpredictable and challenging environment, where various disturbances, such as unplanned natural events, human faults or malicious behaviors, software and hardware failures, etc., may occur during the automation process at runtime. Moreover, ICPS can exhibit strong reconfigurability and evolve structurally for many purposes. During this evolution, new and unforeseen possibilities in the service-oriented business process may appear among various ICPS components. In particular, new “emergent” behaviors may arise that need to be monitored, understood, managed and controlled. When there are significant uncertainties, such emergent behaviors could make the evolved ICPS unstable and unable to meet the quality/performance targets, even resulting in hazards. Well-designed machine-learning techniques have the potential to effectively address the uncertainties and disturbances in the automation of ICPS. They can also facilitate the automated discovery of valuable underlying rules and patterns to improve the performance of ICPS in all phases of their life cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.