Abstract
Quantum computing is a prolific research area, halfway between physics and computer science [27, 29, 52]. Most likely, its origins may be dated back to 70's, when some works on quantum information began to appear (see, e.g., [34, 37]). In early 80's, R.P. Feynman suggested that the computational power of quantum mechanical processes might be beyond that of traditional computation models [25]. Almost at the same time, P. Benioff already proved that such processes are at least as powerful as Turing machines [9]. In 1985, D. Deutsch [22] proposed the notion of a quantum Turing machine as a physically realizable model for a quantum computer. From the point of view of structural complexity, E. Bernstein and U. Vazirani introduced in [20] the class BQP of problems solvable in polynomial time on quantum Turing machines, focusing attention on relations with the corresponding deterministic and probabilistic classes P and BPP, respectively. Several works in the literature explored classical issues in complexity theory from the quantum paradigm perspective (see, e.g., [7, 60, 61]).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.