Abstract

The degree of pore filling is an important parameter for defining guest@MOF properties in applications including electronics, optics, and gas separation. However, the interplay of key aspects of host-guest interactions, such as a quantitative description of the guest alignment or the structural integrity of the host as function of pore filling are yet to be determined. Polarisation-dependent infrared spectroscopy in attenuated total reflection configuration combined with gas sorption allowed to simultaneously study the orientation of the guest molecule and structural changes of the MOF framework during the pore filling process. Thereby we found, that initially randomly oriented guest molecules align with increasing pore filling during adsorption from the gas phase. At the same time, the framework itself undergoes a reversible, guest molecule-dependent rotation of the aromatic linker and a linker detachment process, which induce defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call