Abstract

PurposeFructose is highly lipogenic, and its unhindered ingestion by children and adolescents is understood to induce hypertriglyceridemia and non-alcoholic fatty liver disease (ped-NAFLD) that is till date managed symptomatically or surgically. The aim of the present study was to investigate the potential of hydroethanolic extract of leaves of Guava (PG-HM) to suppress the alterations in the hepatic molecular signals due to unrestricted fructose (15%) drinking by growing rats.MethodsWeaned rats (4 weeks old) in control groups had ad libitum access to fructose drinking solution (15%) for four (4FDR) or eight (8FDR) weeks, ie, till puberty or early adulthood, respectively, while treatment groups (4PGR, 8PGR) additionally received PG-HM (500 mg/kg, po).ResultsThe PG-HM suppressed ped-NAFLD through hepatic signalling pathways of 1) leptin-insulin (Akt/FOX-O1/SREBP-1c), 2) hypoxia-inflammation (HIF-1ɑ/VEGF, TNF-ɑ), 3) mitochondrial function (complexes I–V), 4) oxidative stress (MDA, GSH, SOD) and 5) glycolysis/gluconeogenesis/de novo lipogenesis (hexokinase, phosphofructokinase, ketohexokinase, aldehyde dehydrogenase). Parri passu, the insulin sensitizing effect of PG-HM and its ethyl acetate fraction (PG-EA) was elucidated using HepG2 cells grown in media enhanced with fructose. Further, in murine hepatocytes cultured in fructose-rich media, PG-HM (35 µg mL-1) outperformed Pioglitazone (15 µM) and Metformin (5 mM), to suppress hepatic insulin resistance.ConclusionThis study established that hydroethanolic extract of leaves of Guava (PG-HM) has potential to suppress hepatic metabolic alteration for the management of the pediatric NAFLD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call