Abstract

Machine learning (ML) models can be trade secrets due to their development cost. Hence, they need protection against malicious forms of reverse engineering (e.g., in IP piracy). With a growing shift of ML to the edge devices, in part for performance and in part for privacy benefits, the models have become susceptible to the so-called physical side-channel attacks. ML being a relatively new target compared to cryptography poses the problem of side-channel analysis in a context that lacks published literature. The gap between the burgeoning edge-based ML devices and the research on adequate defenses to provide side-channel security for them thus motivates our study. Our work develops and combines different flavors of side-channel defenses for ML models in the hardware blocks. We propose and optimize the first defense based on Boolean masking . We first implement all the masked hardware blocks. We then present an adder optimization to reduce the area and latency overheads. Finally, we couple it with a shuffle-based defense. We quantify that the area-delay overhead of masking ranges from 5.4× to 4.7× depending on the adder topology used and demonstrate a first-order side-channel security of millions of power traces. Additionally, the shuffle countermeasure impedes a straightforward second-order attack on our first-order masked implementation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call