Abstract

A strategy for state and parameter estimation in nonlinear, continuous-time systems is presented. The method provides guaranteed enclosures of all state and parameter values that are consistent with bounded-error output measurements. Key features of the method are the use of a new validated solver for parametric ordinary differential equations (ODEs), which is used to produce guaranteed bounds on the solutions of nonlinear dynamic systems with interval-valued parameters and initial states, and the use of a constraint propagation strategy on the Taylor models used to represent the solutions of the dynamic system. Numerical experiments demonstrate the use and computational efficiency of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call