Abstract

When reliable prior bounds on the acceptable errors between the data and corresponding model outputs are available, bounded-error estimation techniques make it possible to characterize the set of all acceptable parameter vectors in a guaranteed way, even when the model is nonlinear and the number of data points small. However, when the data may contain outliers, i.e., data points for which these bounds should be violated, this set may turn out to be empty, or at least unrealistically small. The outlier minimal number estimator (OMNE) has been designed to deal with such a situation, by minimizing the number of data points considered as outliers. OMNE has been shown in previous papers to be remarkably robust, even to a majority of outliers. Up to now, it was implemented by random scanning, so its results could not be guaranteed. In this paper, a new algorithm based on set inversion via interval analysis provides a guaranteed OMNE, which is applied to the initial localization of an actual robot in a partially known two-dimensional (2-D) environment. The difficult problems of associating range data to landmarks of the environment and of detecting potential outliers are solved as byproducts of the procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.