Abstract

State-feedback gain-scheduling controller synthesis with guaranteed performance is considered in this brief. Practical assumption has been considered in the sense that scheduling parameters are assumed to be uncertain. The contribution of this paper is the characterization of the control synthesis that parameterized linear matrix inequalities (PLMIs) to synthesize robust gain-scheduling controllers. Additive uncertainty model has been used to model measurement noise of the scheduling parameters. The resulting controllers not only ensure robustness against scheduling parameters uncertainties but also guarantee closed-loop performance in terms of H2 and H∞ performances as well. Numerical examples and simulations are presented to illustrate the effectiveness of the synthesized controller. Compared to other control design methods from literature, the synthesized controllers achieve less conservative results as measurement noise increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.