Abstract
This brief studies the guaranteed <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> performance state estimation problem of delayed static neural networks. The single- and double-integral terms in the time derivative of the Lyapunov functional are handled by the reciprocally convex combination and a new integral inequality, respectively. A delay-dependent design criterion is established such that the error system is globally exponentially stable with a decay rate and a prescribed <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> performance is guaranteed. The gain matrix and the optimal performance index are obtained via solving a convex optimization problem subject to linear matrix inequalities. A numerical example is exploited to demonstrate that much better performance can be achieved by this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems II: Express Briefs
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.