Abstract

For a class of discrete-time switched systems with norm-bounded uncertainties and a quadratic cost index, the problem of designing a guaranteed cost state feedback controller with pole constraints is considered. A sufficient condition on the existence of robust guaranteed controllers is derived by a quadratic Lyapunov function approach together with linear matrix inequality (LMI) technique. Based on a constructed switching law, the closed-loop system is quadratic D-stable and the closed-loop cost function value is not more than a specified upper bound. Furthermore, the design of suboptimal guaranteed cost controllers is turned into a convex optimization problem with linear matrix inequalities constraints. A numerical example demonstrates the effect of the proposed design approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.