Abstract

<p style='text-indent:20px;'>The problem of guaranteed cost control is investigated for a class of discrete-time saturated switched systems. The purpose is to design the switched law and state feedback control law such that the closed-loop system is asymptotically stable and the upper-bound of the cost function is minimized. Based on the multiple Lyapunov functions approach, some sufficient conditions for the existence of guaranteed cost controllers are obtained. Furthermore, a convex optimization problem with linear matrix inequalities (LMI) constraints is formulated to determine the minimum upper-bound of the cost function. Finally, a numerical example is given to demonstrate the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.