Abstract

In order to overcome the treatment difficulty of Lawsonia intracellularis (L.intracellularis) using antibiotics, the tilmicosin (TIL)-loaded sodium alginate (SA)/gelatin composite nanogels modified with bioadhesive substances were designed. The optimized nanogels were prepared by electrostatic interaction between SA and gelatin at a mass ratio of 1:1 and CaCl2 as an ionic crosslinker and further modified with guar gum (GG). The optimized TIL-nanogels modified with GG had a uniform spherical shape with a diameter of 18.2 ± 0.3 nm, LC of 29.4 ± 0.2 %, EE of 70.4 ± 1.6 %, PDI of 0.30 ± 0.04, and ZP of −32.2 ± 0.5 mv. The FTIR, DSC, and PXRD showed that GG was covered on the surface of TIL-nanogels in a pattern of staggered arrangements. The TIL-nanogels modified with GG had the strongest adhesive strength amongst those with I-carrageenan and locust bean gum and the plain nanogels, and thus significantly enhanced the cellular uptake and accumulation of TIL via clathrin-mediated endocytosis. It exhibited an increased therapeutic effect against L.intracellularis in vitro and in vivo. This study will provide guidance for developing nanogels for intracellular bacterial infection treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call