Abstract

The incorporation of bioactive extract from the food waste into biopolymers is a promising green approach to fabricate active films with antioxidant activity for food packaging. The present study developed bioactive antioxidant films based on guar gum/carboxymethyl cellulose incorporated with halloysite-nanotubes (HNT) and litchi shell extract (LSE). The effects of combining HNT and LSE on the physical, mechanical, and antioxidant properties of the films were analyzed. The results showed LSE caused a reduction in tensile strength; however, the elongation at break substantially improved from 29.93 to 62.12%. FTIR revealed covalent interaction and hydrogen bonding between guar gum/carboxymethyl cellulose and LSE. The XRD and SEM study confirmed interactions among the polymer matrix and LSE compounds. The addition of LSE to guar gum/carboxymethyl cellulose films notably increased the UV–light barrier properties. Moreover, the antioxidant activity of all GCH/LSE substantially improved from 9.46 to 91.52%, more than a ten-fold increase compared to composite neat GCH film. Finally, the oxidative stability of roasted peanuts packed in fabricated GCH/LSE sachets improved after 8 days. Guar gum/carboxymethyl cellulose containing LSE as an antioxidant agent could be applied as food packaging for low water activity oxygen-sensitive food.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.