Abstract
We investigated the reaction mechanism for GTP-dependent Ca2+ uptake by canine cardiac microsomes enriched in fragmented sarcoplasmic reticulum (SR), because previous studies reported that GTP utilization in cardiac SR occurs via a pathway very different from that for ATP utilization (for a review, see "Entman, M.L., Bick, R., Chu, A., Van Winkle, W.B., & Tate, C.A. (1986) J. Mol. Cell. Cardiol. 18, 781-792"). In cardiac microsomes, we detected slow but distinct oxalate-dependent Ca2+ accumulation, which reached 550 nmol/mg protein in 10 min, and similarly slow Ca2+-dependent GTP hydrolysis. In 50 microM [gamma-32P]-GTP at 0 degrees C, we detected Ca2+-dependent formation of phosphoprotein whose level in the steady state was about a half of the maximum obtained with [gamma-32P]ATP. Kinetic properties of the phosphoprotein, its molecular weight and its chemical stability after the acid treatment are consistent with the conclusion that the phosphoprotein is an acylphosphate intermediate for Ca2+-dependent GTP hydrolysis catalyzed by the Ca2+-pump ATPase. Analysis of the kinetics of the turnover of phosphoprotein revealed that slow GTP hydrolysis is due to slow phosphoprotein formation; at 25 degrees C, the latter arises mainly from slow binding of Ca2+ to the dephosphorylated enzyme. These results indicate that, contrary to the previous data, the reaction pathway for GTP-dependent Ca2+ transport in cardiac SR is basically the same as that for ATP-dependent transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.