Abstract

Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) caused by an abnormal rate of apoptosis. Endogenous stem cells in the adult mammalian brain indicate an innate potential for regeneration and possible resource for neuroregeneration in PD. We previously showed that guanosine prevents apoptosis even when administered 48 hr after the toxin 1-methyl-4-phenylpyridinium (MPP(+)). Here, we induced parkinsonism in rats with a proteasome inhibitor. Guanosine treatment reduced apoptosis, increased tyrosine hydroxylase-positive dopaminergic neurons and expression of tyrosine hydroxylase in the SNc, increased cellular proliferation in the SNc and subventricular zone, and ameliorated symptoms. Proliferating cells in the subventricular zone were nestin-positive adult neural progenitor/stem cells. Fibroblast growth factor-2-expressing cells were also increased by guanosine. Thus, guanosine protected cells from apoptosis and stimulated "intrinsic" adult progenitor/stem cells to become dopaminergic neurons in rats with proteasome inhibitor-induced PD. The cellular/molecular mechanisms underlying these effects may open new avenues for development of novel therapeutics for PD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.