Abstract
A self-assembled G-quadruplex formed by guanosine and borate as the chiral scaffold was used to catalyze the asymmetric Friedel-Crafts reaction in water. Catalysis, depending on the self-assembly of guanosine and borate into a fibrillar structure in the presence of Cu2+ ions, can be modulated by the assembly concentration, temperature, and amount of Cu2+ ions. Detailed spectral experiments proved that the guanosine-based assembly in solution was responsible for the enantioselective catalysis, rather than small-molecule species. Some of the similar G-quartet assemblies were unable to promote the asymmetric reaction, implying unique properties of the current system, including excellent lifetime stability and supramolecular chiral structures. This work provided the first example of the self-assembled G-quadruplex achieving enantioselective catalysis and some perspective to better understand the design of nucleoside-based self-assemblies for an enantioselective reaction. In view of guanosine as a building block, these findings may be applied to discuss the prebiotic chiral catalyst preceded ribozymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.