Abstract

AbstractThis manuscript describes the synthesis and characterization of guanine and cytosine‐containing supramolecular copolymers, which are inspired from the guanine and cytosine nucleobase pair in deoxyribonucleic acid. Regioselective Michael‐addition allowed the efficient installation of the nucleobases on acrylate‐containing monomers, which enabled the preparation of a series of nucleobase‐functionalized acrylate and n‐butyl acrylate copolymers using conventional free radical copolymerization. Guanine‐containing copolymers exhibited superior thermal properties, thermomechanical performance, and more defined morphological structure than cytosine‐containing copolymer analogs due to the relatively strong guanine self‐association, thus expanding the potential applications for mechanically reinforced polymeric networks. Blending guanine‐ and cytosine‐containing copolymers formed a supramolecular structure through multiple hydrogen bonding between guanine and cytosine units. The supramolecular blend exhibited intermediate thermomechanical and morphological properties, which suggested that guanine and cytosine units were not fully associated in the random copolymer composition. This work provides valuable fundamental understanding of structure–property‐morphology relationships in acrylic copolymers with the presence of guanine‐cytosine self‐ and complementary interactions, suggesting new understanding in supramolecular design for enhanced mechanical and morphological properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.