Abstract
A modified imidazole, namely guanidimidazole (GIm) was designed and synthesized as a novel quaternizing- and cross-linking agent for alkaline polymer electrolyte membrane fabrication. The resulting membrane was more alkali tolerant and swelling resistant than that quaternized purely by 1-methylimidazole owing to the enhanced resonance and cross-linking ability of GIm, the former confirmed by a LUMO (lowest unoccupied molecular orbital) energy calculation. The membrane also showed good ionic conductivity, mechanical strength and thermal stability. A H2/O2 fuel cell using the synthesized membrane showed a peak power density of 39mWcm−2 at 50°C. This work preliminarily demonstrates the beneficial effect of imidazole modification by both experimental and computational investigation; it provides a new cation design strategy that may potentially achieve simultaneous improvement of alkali stability and swelling resistance of alkaline electrolyte membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.