Abstract
Guaiacol (2-methoxyphenol, C6H4(OH)(OCH3)) adsorption and reactions on a Pt(100) surface were studied with infrared reflection–absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) measurements at different surface coverage values from 100 to 800 K. In addition, density functional theory (DFT) calculations were used to determine geometries, adsorption energies, and vibrational frequencies for adsorption structures. Depending on surface coverage, guaiacol formed one or two physisorbed states. At low coverage, a single state with a desorption peak at 225 K was observed. At high coverage, two physisorbed states were observed with desorption peaks at 195 and 225 K. At temperatures above 225 K, after the desorption of physisorbed layers, a dissociatively adsorbed structure, C6H4O(OCH3) + H, was observed. Recombinative molecular guaiacol desorption was detected at 320 K. The dissociatively adsorbed structure was stable up to 337 K when C–O bonds began to break. Molecularly adsorbed guaiacol...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.