Abstract

Sex determination pathways are astoundingly diverse in insects. For instance, the silk moth Bombyx mori uniquely use various components of the piRNA pathway to produce the Fem signal for specification of the female fate. In this study, we identified BmGTSF1 as a novel piRNA factor which participates in B. mori sex determination. We found that BmGtsf1 has a distinct expression pattern compared to Drosophila and mouse. CRISPR/Cas9 induced mutation in BmGtsf1 resulted in partial sex reversal in genotypically female animals by shifting expression of the downstream targets BmMasc and Bmdsx to the male pattern. As levels of Fem piRNAs were substantially reduced in female mutants, we concluded that BmGtsf1 plays a critical role in the biogenesis of the feminizing signal. We also demonstrated that BmGTSF1 physically interacted with BmSIWI, a protein previously reported to be involved in female sex determination, indicating BmGTSF1 function as the cofactor of BmSIWI. BmGtsf1 mutation resulted in piRNA pathway dysregulation, including piRNA biogenesis defects and transposon derepression, suggesting BmGtsf1 is also a piRNA factor in the silkworm. Furthermore, we found that BmGtsf1 mutation leads to gametogenesis defects in both male and female. Our data suggested that BmGtsf1 is a new component involved in the sex determination pathway in B. mori.

Highlights

  • The mechanisms of sex determination are highly diverse in different species of insects [1,2,3,4]

  • We demonstrated that BmGTSF1 physically interacted with BmSIWI, a protein previously reported to be involved in female sex determination, indicating BmGTSF1 function as the cofactor of BmSIWI

  • We still know little about the initiation of B. mori sex determination and its relationship with PIWI-interacting RNA (piRNA) pathway

Read more

Summary

Introduction

The mechanisms of sex determination are highly diverse in different species of insects [1,2,3,4]. A PIWI-interacting RNA (piRNA) precursor called Feminizer (Fem), which has more than 30 copies distributed in the sex determination region of the W chromosome, has been proposed to act as the female determining factor in the silkworm. PiRNAs derived from Fem repress the expression of the Masculinizer gene (Masc) which located on the Z chromosome through piRNA pathway, a mechanism for transposon silencing. When Masc levels are low, the final effector in the pathway, the dsx gene, expresses female-specific variants which instruct female development [15, 16]. BmPSI and male-specific BmIMP (BmIMPM) are involved in male-specific Bmdsx splicing through inhibiting the female-specific Bmdsx splicing in males [17, 47].The function of Fem requires assistance of piRNA pathway gene like BmSiwi, deletion of which can cause partial sexual reversal of female [18]. Except for BmSIWI and its cofactor BmASH2, no any other piRNA pathway factor was shown to be involved in sex determination pathway in the silkworm

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call