Abstract

Annexin VI (AnxVI) of molecular mass 68-70 kDa belongs to a multigenic family of ubiquitous Ca2+- and phospholipid-binding proteins. In this report, we describe the GTP-binding properties of porcine liver AnxVI, determined with a fluorescent GTP analogue, 2'-(or 3')-O-(2,4,6-trinitrophenyl)guanosine 5'-triphosphate (TNP-GTP). The optimal binding of TNP-GTP to AnxVI was observed in the presence of Ca2+ and asolectin liposomes, as evidenced by a 5.5-fold increase of TNP-GTP fluorescence and a concomitant blue shift (by 17 nm) of its maximal emission wavelength. Titration of AnxVI with TNP-GTP resulted in the determination of the dissociation constant (Kd) and binding stoichiometry that amounted to 1.3 microM and 1:1 TNP-GTP/AnxVI, mole/mole, respectively. In addition, the intrinsic fluorescence of the membrane-bound form of AnxVI was quenched by TNP-GTP and this was accompanied by fluorescence resonance energy transfer (FRET) from AnxVI Trp residues to TNP-GTP. This indicates that the GTP-binding site within the AnxVI molecule is probably located in the vicinity of a Trp-containing domain of the protein. By controlled proteolysis of human recombinant AnxVI, followed by purification of the proteolytic fragments by affinity chromatography on GTP-agarose, we isolated a 35 kDa fragment corresponding to the N-terminal half of AnxVI containing Trp192. On the basis of these results, we suggest that AnxVI is a GTP-binding protein and the binding of the nucleotide may have a regulatory impact on the interaction of annexin with membranes, e.g. formation of ion channels by the protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.