Abstract
The GTPase activity of the stimulatory guanine nucleotide-binding regulatory protein (Gs) of hormone-sensitive adenylate cyclase was investigated using purified rabbit hepatic Gs and either [alpha-32P]- or [gamma-32P] GTP as substrate. The binding of [35S]guanosine 5'-O-(thiotriphosphate) (GTP gamma S) was used to quantitate the total concentration of Gs. 1) GTPase activity was a saturable function of the concentration of GTP, with Km = 0.3 microM. MgCl2 monotonically increased the activity. The maximum observed turnover number was about 1.5 min-1. 2) During steady-state hydrolysis, 20-40% of total Gs could be trapped as a Gs-GDP complex and 1-2% could be trapped as Gs-GTP. The hydrolysis of Gs-GTP to Gs-GDP occurred with t 1/2 less than or equal to 5 s at 30 degrees C and t 1/2 approximately 1 min at 0 degrees C. Hydrolysis of Gs-GTP was inhibited by 1.0 mM EDTA in the absence of added Mg2+. 3) The rate of formation of Gs-GDP and the initial GTPase rate varied in parallel as functions of the concentrations of either GTP or MgCl2 (above 0.1 mM Mg2+). The ratio of the rate of accumulation of Gs-GDP to the GTPase rate was constant at 0.3-0.4. 4) The rate of dissociation of assayable Gs-GDP was biphasic. The initial phase accounted for 60-80% of total assayable Gs-GDP and was characterized by a t 1/2 of about 1 min. 5) Lubrol 12A9 potently inhibited the GTPase reaction and the dissociation of Gs-GDP in parallel, and inhibition of product release may account for the inhibition of steady-state hydrolysis. 6) The beta and gamma subunits of Gs markedly inhibited the dissociation of GDP from Gs in contrast to their ability to stimulate the dissociation of GTP gamma S. 7) GDP, GTP gamma S, and guanyl-5'-yl imidodiphosphate (Gpp(NH)p) competitively inhibited the accumulation of Gs-GDP. GTP gamma S and Gpp(NH)p inhibited the GTPase reaction noncompetitively, GDP displayed mixed inhibition, and Pi did not inhibit. These data are interpretable in terms of the coexistence of two specific mechanistic pathways for the overall GTPase reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.